A nutrient solution (fertilisation) is needed to supply the plants. Depending on the plant and the growth phase, the nutrients that the plant needs vary. The fish waste already provides a large part of the necessary basic substances. Beyond that, however, every plant needs tiny amounts of additional substances without which growth will not develop optimally. In the same way, the speed of growth and finally also the harvest results are not optimal.
In Wikipedia (see below) you will find various mixtures of nutrients, which of course are not equally suitable for every plant and every phase of its development. At this point we advise you on the optimal fertilisation for each plant depending on its stage of development. We also provide you with the necessary knowledge to carry out the water analysis. Depending on the size and equipment of the plant, basic substances are continuously controlled by a computer. For some special nutrients, a simple check at longer intervals is sufficient, as the nutrient cycle of the plant is separated from the environment. We offer you a nutrient analysis for exactly your plantation.
We create a concept for your plant that optimises the yield and minimises the necessary investments. You can reach us by phone to make an appointment for a consultation or send us a short message so that we contact you.
Here is an excerpt from the free Wikipedia on nutrient solutions. Links, sources and references can be found at the bottom of the page.
Various nutrient solutions are used undiluted for hydrocolture, for example:
Nutrient solution according to Abram Steiner The following table shows the composition of all nutrients in a stock solution developed by Abram Steiner:
Nutrient concentration [mg/L] Nitrogen 170 Phosphorus 50 Potassium 320 Calcium 183 Magnesium 50 Sulphur 148 Iron 4 Manganese 2 Boron 2 Zinc 0.2 Copper 0.5 Molybdenum 0.1 Historically first nutrient solution according to Sachs and Stöckhardt One litre of ready-made solution contains: 1 g potassium nitrate 0.5 g calcium sulphate 0.4 g magnesium sulphate 0.5 g calcium hydrogen phosphate and a trace of iron (III) chloride.
Nutrient solution according to Wilhelm Knop One litre of ready solution contains: 1.00 g Ca(NO3)2 calcium nitrate 0.25 g MgSO4 * 7 H2O Magnesium sulphate 0.25 g KH2PO4 Potassium dihydrogen phosphate 0.25 g KNO3 Potassium nitrate Traces FeSO4 * 7 H2O Iron(II) sulphate.
Medium according to Pirson and Seidel One litre of ready solution contains 1.5 milliMol KH2PO4 2.0 mM KNO3 1.0 mM CaCl2 1.0 mM MgSO4 18 μM Fe-Na-EDTA 8.1 μM H3BO3 1.5 μM MnCl2.
Nutrient medium according to Epstein One litre of ready solution contains 1 mM KNO3 1 mM Ca(NO3)2 1 mM NH4H2PO4 1 mM (NH4)2HPO4 1 mM MgSO4 0.02 mM Fe-EDTA 0.025 mM H3BO3 0.05 mM KCl 0.002 mM MnSO4 Trace elements: 0.002 mM ZnSO4 0.0005 mM CuSO4 0.0005 mM MoO3
Trace element addition according to D. R. Hoagland (1884-1949) One litre of ready solution contains 55 mg Al2(SO4)2 28 mg KJ 28 mg KBr 55 mg TiO2 28 mg SnCl2 - 2 H2O 28 mg LiCl 389 mg MnCl2 - 4 H2O 614 mg B(OH)3 55 mg ZnSO4 55 mg CuSO4 - 5 H2O 59 mg NiSO4 - 7 H2O 55 mg Co(NO3)2 - 6 H2O
Nutrient media for cell cultivation Since the development of roots in cuttings in hydroponic cultures does not differ significantly from the development of single cells or callus tissue in in vitro cultures, the same nutrient media or special additives as for plant tissue cultures (see Murashige-Skoog medium) are used in hydroponics. However, the quantity ratio of auxin to cytokinin is decisive for the differentiation of the plant cells. At a ratio of 10:1 a callus is formed, at 100:1 roots are formed, at other dilutions stems or flowers [32]. By varying different hydroponic nutrient solutions, it is thus common (and quicker than with soil culture) to "switch over" to forced root formation, growth phase or flower formation[33].
- Tom Alexander: Best of Growing Edge. New Moon Publishing, Inc., 2000, ISBN 978-0-944557-03-7, S. 52 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Faulkner, S. P.: The Growing Edge. 4. Auflage. Nr. 9, S. 43–49.
- ↑ André Pirson, Franz Seidel: Zell- und stoffwechselphysiologische Untersuchungen an der Wurzel von Lemna minor L. unter Berücksichtigung von Kalium- und Kalziummangel. Planta 38: 431473. 1950
- ↑ modifiziertes Nährmedium nach Pirson und Seidel, zitiert nach Daniela Schraut: Auswirkungen von externen Stressbedingungen auf die radialen Wasser- und ABA-Flüsse und den endogenen ABA-Gehalt des Wurzelgewebes von Maiskeimlingen (Zea mays L.). (Anmerkung: Die Substanzen sind in der Quelle ohne Kristallwasser vermerkt, wegen der Angabe in mM können sowohl Rohstoffe mit oder ohne Kristallwasser verwendet werden)
- ↑ Epstein, E.: Mineral Nutrition of Plants: Principles and Perspectives. John Wiley and Sons, Inc., New York, London, Sydney, Toronto. 1972.
- ↑ modifiziertes Nährmedium nach Epstein, zitiert nach Nicole Geißler: Untersuchungen zur Salztoleranz von Aster tripolium L. und deren Beeinflussung durch erhöhte atmosphärische CO2-Konzentration, Gießen, 2006 (Anmerkung: Die Substanzen sind in der Quelle ohne Kristallwasser vermerkt, wegen der Angabe in mM können sowohl Rohstoffe mit oder ohne Kristallwasser verwendet werden)
- ↑ A-Z-Lösung
- ↑ Munk, Grundstudium der Biologie – Bd. Botanik, 2001, Spektrum Verlag; zitiert in: Scriptum 'Phytohormone' der Universität Graz (PDF-Datei)
- ↑ Erwin Beck, Katja Hartig: Wie Hormone die Zellteilung der Pflanzen kontrollieren, Biol. Unserer Zeit, 4/2009 (39), (PDF-Datei)
Quellen u.a. : https://de.wikipedia.org/wiki/Hydrokulturd%C3%BCnger, https://de.wikipedia.org/wiki/Hydrokultur
Context:
ID: 141
|